Article Body

For most of its history, Le Mans has been a proving ground for new forms of automotive techno­logy. This year, two of the fastest cars in the race are hybrid-electric vehicles. The Audi R18 e-tron quattros feature electric motors attached to their front axles. The Toyota TS030 Hybrids carry supercapacitors that soak up energy while braking and discharge it for a quick burst of extra speed on straightaways. But the DeltaWing is an order of magnitude more radical than either of these cars. Its novel shape enables it to clock competitive lap times with an engine only slightly more powerful than the one in a standard family sedan. As the car's designer, Ben Bowlby, puts it: "The DeltaWing goes the same speed with half the weight, half the drag, half the power and half the fuel consumption." Technically, the DeltaWing isn't competing with the Audis or Toyotas or any other cars in the field. It's the 56th entry in a 55-car race, filling the single demonstration slot reserved for experimental vehicles. Today the DeltaWing's three drivers will aim to complete each 8.5-mile lap in three minutes and 45 seconds. This is, for the record, about 20 seconds slower than the Audis and Toyotas. By cranking up the boost in the turbocharged engine, the DeltaWing could easily go faster—a lot faster. It could also have been fitted with a much bigger fuel tank, which would have allowed it go twice as far before pitting for gas. But to avoid any chance of a noncompeting entry upstaging the actual racers, officials have given the DeltaWing a target average lap speed of 135 miles per hour. The car easily hit the target during practice. Surviving the race, though, will be a colossal challenge. The DeltaWing's four-man core design team has been working on the car for barely a year. Virtually every component was designed and built from scratch. The crew was still fitting parts to the car the day before it first turned a wheel, less than four months ago, and Nissan, the car's primary sponsor, didn't officially come on board until after the inaugural test. Top teams prepare for Le Mans by testing their cars for 24 or even 36 hours nonstop. The DeltaWing ran about 12 hours total before arriving here. What are the odds that a hastily assembled prototype representing the biggest departure from racing tradition in decades will complete one of the toughest tests of endurance in all of motor sports? "Nobody comes to Le Mans not to finish," says Jerry Hardcastle, a chief engineer with Nissan, the supplier of the car's engine. "But I will be smiling every minute the car lasts after two hours."
In 2008 Bowlby experienced an epiphany. He was attending the U.S. motorcycle Grand Prix, marveling at the sight of motorcycle riders leaning at 45-degree angles as they drifted through 100mph corners, tires squirming at the edge of traction. It struck him that any spectator, no matter how clueless, could see the courage and talent of professional bikers. Racecars, on the other hand, hide their drivers' skills. Their giant wings produce so much grip that driving them looks effortless. The wings also generate a wake of turbulent "dirty air" that prevents cars from racing closely together, robbing races of drama. Bowlby wanted to get rid of the wings. What would happen, he wondered, if he mounted a single front wheel in the center of a super-narrow nose? The streamlined snout would reduce drag and cut weight. Plus, it would permit a wingless aerodynamic profile that would showcase the driver's prowess, allowing him to slide more outrageously into corners and run closer to competitors. This triangular profile—known as a delta wing planform—is common among Top Fuel dragsters and land-speed record cars. But those machines race only in a straight line. If they had to turn at high speed, wouldn't they just topple over like a little kid on a tricycle? As Bowlby thought more deeply about the issue, he realized that the problem with most three-wheelers was not the number and arrangement of the wheels. It was the disastrously high center of gravity. So he conducted an experiment. He bought a pair of radio-control cars, modified one to run with a single, centered front wheel, and tested them both on a frigid winter night on the suburban streets around his home in Zionsville, Indiana. The battery-powered three-wheeler, with its low center of gravity, turned just fine. In fact, it cornered at higher speeds than the four-wheel version. Later, back at the Ganassi shop, computer simulations showed that a full-size car built on the same template should turn just as well.

Article End